Haematuria, Proteinuria and Chronic Renal Failure

David Voss ED** BSc MBChB FRACP MRCP(UK) RNZAMC <u>Renal Physician</u>

Eastcare & Waitemata Specialists Centres, Ascot Office Park (Remuera)

Procare Group: Wednesday 12 October 2011 @ 19:00 St Heliers Presbyterian Church Community Centre

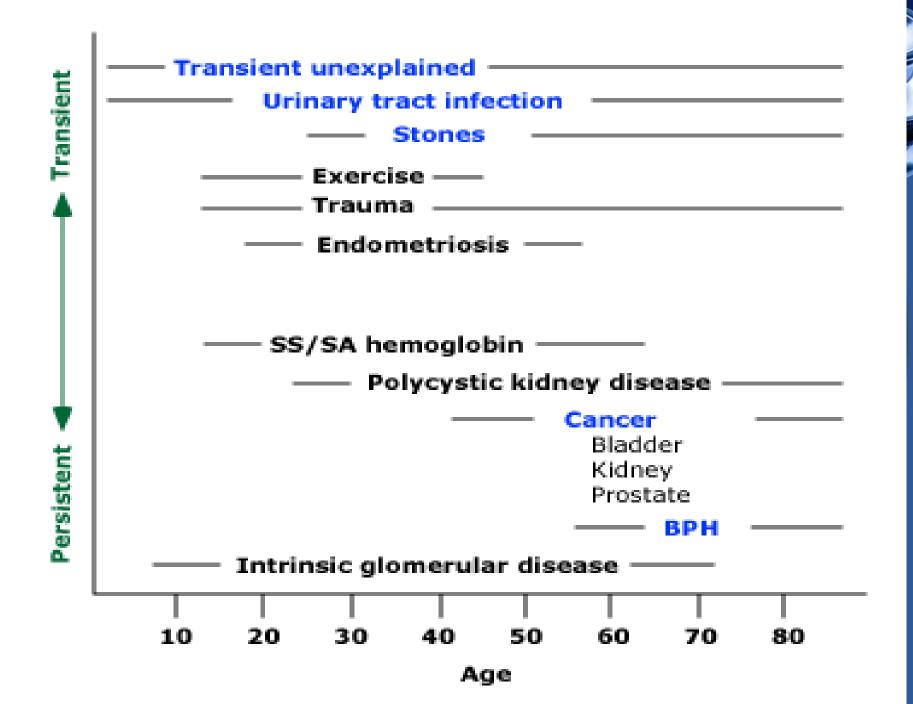
Haematuria - macroscopic

- Clots => lower urinary tract origin
- Trauma and UT stones
- Tumour
- Glomerulonephritis
- UTI
- Meatal or perineum irritation
- Contamination from menstrual periods
- Structural: stricture; VUR; RN
- Drugs
 - cyclophosphamide

Haemoglobinuria

- Haemoglobulinuria
 - Dimer M. Wt = 34,000
 - Protein bound (haptoglobin)
 - From intravascular lysis
 - Occurs once haptoglobin saturated
 - Met-haemoglobulinuria ("Coke colour")
 - Slow nephron transit time
 - Acid urine

Myoglobinuria


- Myoglobinuria
 - -Monomer M. Wt = 17,000
 - Not protein bound
 - Readily filtered in glomerulus
 - Therefore clears serum rapidly
 - Discolours urine
- Rhabdomyolysis
 - CK (creatine phosphokinase) levels

Other red urine (1)

- Beet beta(al)nin (14% of population)
 - Not seen in ileostomy patients
 - ?colonic absorption
 - Worse in:
 - Fe deficiency
 - Oxalaturia (rhubarb, oysters, chocolate, tea, spinach)
 - Pernicious anaemia induced achlorhydria
- Food dyes
- Porphyria

Other red urine (2)

- Food dyes
- Porphyria
- B12
 - In treatment of cyanide poisoning

Detection/diagnosis

Dipstick

- More sensitive than microscopy
 - False positives
 - Semen (positive haem reaction)
 - Alkaline urine
 - Myoglobinuria
 - Very dilute urine can haemolyse RBCs
- False negatives
 - Excessive vitamin C
- Factitious (rare)

Clues from history

- Vigorous exercise or trauma
- Dysuria and pyuria
- Family history
- Unilateral flank pain
- Prostatic obstructive symptoms
- Bleeding disorders
 - The case of anti-coagulants
- Travel
- Sterile pyuria (e.g. Tb; analgesics; IN)

Site/level of haematuria

- Glomerular
 - RBC casts
 - Proteinuria > 500mg/24 hours
 - Dysmorphic RBCs
 - Especially acanthocytes
 - "Coke" coloured urine
- Non-glomerular
 - Lower UT symptoms
 - clots

Investigations

- Cytology
 - 90% sensitivity for CA bladder
 - < 35% for upper UT tumours</p>
- Imaging
 - USS
 - IVP / IVU
 - -CT
 - -MR
 - pyelography

Imaging

- CT urogram (radiation dose is high)
 Replaced IVU / IVP
- USS
 - Not so good for small urothelial lesions
- MR urography
 - Misses smaller lesions and nonobstructing stones
- Retrograde pyelography

 Similar detection to CT urography

The 40 year-old cut off age

- < 40 year old
 - Non-tumour
 - Renal origin
 - USS
 - CT if high risk
- >40 (maybe 45 year old)
 CT urography

Cystoscopy

- In combination with CT urogram
 Excellent screening in combination
- Only method to visualise prostate and urethra

Source of bleeding
 And treatment

"No cause found"

- Intermittent?
 - How far do we investigate?
- 5-10% of cases
- Hypercalciuria and hyperuricosuria
 - Family history
- Rare:
 - Schistosomiasis
 - Radiation
 - AV malformations/fistulae
 - Haemorrhagic telangiectasia
 - Loin pain syndrome
 - Nutcracker syndrome

Follow-up / treatment

- Treat the cause
- No specific treatment for haematuria per se

- No cause found
 - 3 to 6 monthly monitoring
 - ?duration
 - 3-5 years

Summary – haematuria investigation

- Renal function, MSU, urine microscopy
 Urine RBC morphology
- Quantify proteinuria
 - 24 hr; protein-creatinine ratio (PCR); random
- Urinary cytology
- Others: Ca and PO₄; SPE; BJ proteinuria; LFT; ANA, dsDNA; ANCA; Ig; PTH; complements.
- If < 40 year old renal USS
 otherwise CT urogram

Summary – haematuria referral

- Isolated microscopic
 - With symptoms -> urologist
 - Painless
 - < 40 year old -> renal physician
 - > 40 year old => cancer (urologist)
- With proteinuria and/or impaired renal function
 - -> Renal physician / nephrologist

Proteinuria

Proteinuria

- Marker of urinary tract inflammation
 - Primarily renal in origin
 - Glomerulonephritis
 - Tubulo-interstitial nephritis
- "Transient contamination"
 - Prostatitis
 - UTI
 - Minor
 - Seminal fluid

Proteinuria types or origins

- Isolated
 - Glomerular
 - Tubular
 - Overflow
 - Mixed
 - Any combination of above (e.g. myeloma)

- Other
 - Concurrent haematuria

Glomerular proteinuria

- Serum macromolecular proteins
 - Albumin
 - Glomerular diseases
 - Diabetic nephropathy
 - "Benign" causes
 - Usually < 2 gram/24 hours proteinuria
 - Orthostatic
 - Exercise induced

Tubular proteinuria

- Low molecular weight proteins
 - Not detected by dipsticks
 - Freely filtered
 - Usually reabsorbed unless tubular overload or dysfunction
 - β2 microglobulin
 - Immunoglobulin light chains
 - Retinol protein
 - Amino acids

Overflow proteinuria

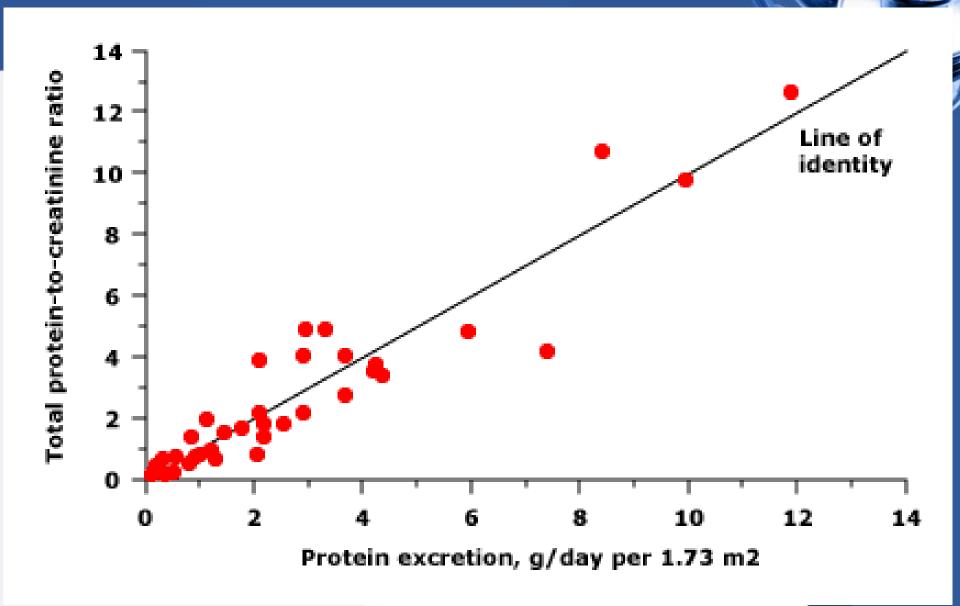
- Myeloma (most common)
 Immunoglobulin light chains
- Less common causes:
 - Lysosomal (a. myelomonocytic leukaemia)
 - Myoglobin (rhabdomyolysis)
 - Haemoglobin (haemolysis)

Detection of Proteinuria

- Dipstick
 - Albuminuria
 - Misses tubular proteins

Laboratory quantification
 – Pros and cons

Detection of Proteinuria


- 24-hour versus timed urine collection
 - Accuracy of 24 hour collection
 - Total urine volume in timed collections
- Untimed urinary protein-creatinine ratio
 - Pragmatic
 - Reproducible
 - Affordable and effective

Quantification

dipstick	24 hour	
Trace	150 – 300mg	
+	300 – 1,000mg	
++	1 – 3G	
+++	3 – 10G	
++++	> 10G	

Quantification

24 hour collection	mg/L or g/L (spot urine)	mg/mmol (PCR)
< 300mg	20 – 30 mg/L	20
500mg	40 mg/L	40
1G	0.6 (600mg/L)	60 – 80
3G	2 G/L	180 – 250
10G	6 G/L	600 – 800

Albumin / ACR

ACR problems

- 24-hour urine and spot urines do not correlate well
 - Orthostatic proteinuria
 - Pragmatically first-am and mid-pm are best times
- Depends upon serum creatinine (denominator)
 - Muscular people will have a low value
- Vigorous exercise leads to increased albuminuria
 - Wait 24 hours

The risk of proteinuria...

- Meta-analysis of general population cohort: n = 105,872 (ACR), plus n = 1,128,310 (dipstick proteinuria); mean follow-up of 7.9 years (*cf.* a group with mean eGFR of 95ml/min/1.73m² BSA)
 - Hazard ratios for all cause mortality
 - eGFR 60 1.18 (CI 1.05-1.32)
 - eGFR 45 1.57 (CI 1.39-1.78)
 - eGFR 15 3.14 (CI 2.30-4.13)

The risk of proteinuria.....

- Presence of proteinuria alone -> RR of cardiovascular event = 1.3
- Nat Health and Nutrition Examination Survey cardiovascular death rate (unadjusted):
 - Proteinuria <30 6.2 deaths / 1000 person-yr</p>
 - Proteinuria 30-299 17.9 deaths / 1000 person-yr
 - Proteinuria >300 37.2 deaths / 1000 person-yr
- When adjusted:
 - Relative hazard 1.57 (30-299 cf. <30 cohort)
 - Relative hazard 1.8 (>300 cf. <30 cohort)

Microalbuminuria

Associated with LV dysfunction; stroke; MI

- Doubles mortality in DM
 Especially in type I DM
- Indicator of inflammation
 - Within renal tissue
 - Endothelium

Proteinuria

- Concurrent disease
 - Inflammation elsewhere (only \rightarrow small increase)
 - E.g. ACR < 10mg/mmol
 - Long-standing poorly controlled hypertension
 - Rarely above < 3G per day
 - Diabetes mellitus
 - Usually concurrent diabetic retinopathy
 - Connective tissue diseases
 - Medications

When to refer

- Unexplained proteinuria
- Worrisome concurrent diagnosis

 Connective tissue diseases
- Nephrotic
- Concurrent impaired renal function
- >1G per 24 hours
 - ~ spot > 600mg/L
 - ~ PCR > 60mg/mmol (60g/mol)

Investigations

- Renal function, uric acid, Ca and PO₄
- FBC; ?LFT
- Serum & urine protein electrophoresis
- Renal ultrasound scan
- Others
 - Serology CT diseases
- Renal biopsy

Management

- Generic
 - Cease offending agent(s)
 - E.g. Nephrotoxins \rightarrow interstitial nephritis
 - ACEi and/or ARBs
 - Type I diabetes mellitus
 - Other glomerulonephritides
- Specific
 - Immunosuppressives

Management

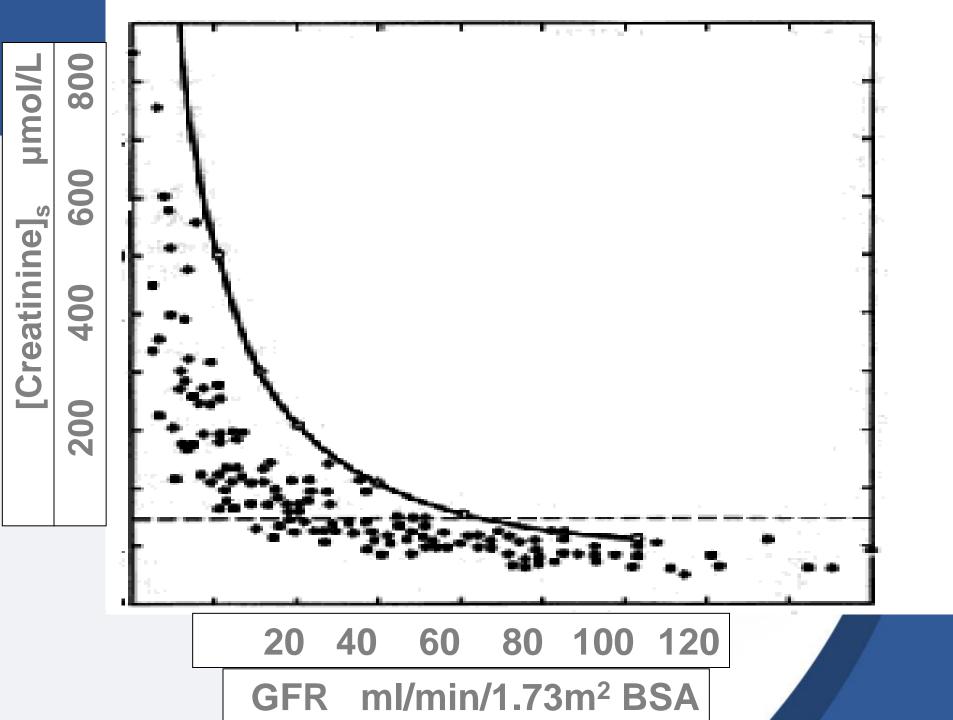
- Goal is to minimise proteinuria
- General rule:
 - Double ACEi or ARB dose
 - \rightarrow 30-50% reduction in proteinuria
- Limitation of ACEi & ARB
 - hyperkalaemia when eGFR < 30

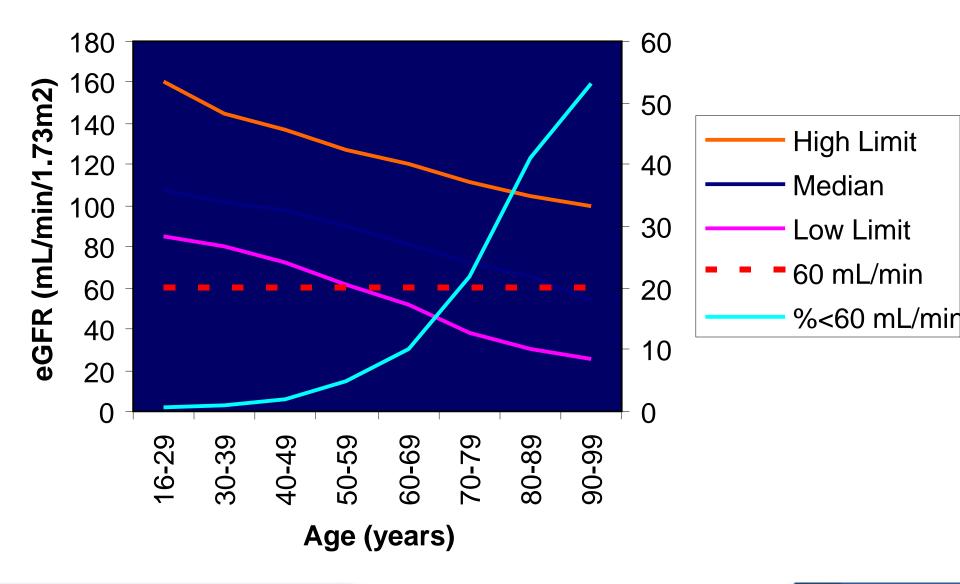
Monitoring and follow-up

 Weekly to monthly during initial treatment

- Subsequently 3 monthly
 - Takes 3 months, and up to 2 years to see maximum benefit of ACEi and ARB dose changes

Dietary salt and proteinuria


 Anti-proteinuria effects of ACEi and ARB reduced with high salt diet in NON-DIABETICS


- therefore in the non-diabetic with proteinuria
 - With good BP (systolic < 130mmHg)</p>
 - Should have sodium restricted diet
 - 24 hour urine Na < 100mmol.

Summary - proteinuria

- Dipsticks test for ALBUMIN
 - Will miss tubular protein and myeloma and light chain disease
- Spot urine for proteinuria is satisfactory
- ACEi and ARBs for proteinuria
- Consider salt restriction if treatment failure
- 3-monthly monitoring of progress
- Refer if proteinuria > 1G/24 hours

eGFR deteriorates with age (median eGFR for age – a GUIDE)

AGE (years)	Male	Female
60	80mL/min/1.73 m ²	60mL/min/1.73 m ²
65	75mL/min/1.73 m ²	55mL/min/1.73 m ²
70	70mL/min/1.73 m ²	50mL/min/1.73 m ²
75	65mL/min/1.73 m ²	45mL/min/1.73 m ²
80	60mL/min/1.73 m ²	40mL/min/1.73 m ²
85	55mL/min/1.73 m ²	35mL/min/1.73 m ²
90	50mL/min/1.73 m ²	30mL/min/1.73 m ²

CRF stages

Stage	Description	GFR (ml/min/1.73m ²)
1	Kidney damage with normal or \uparrow GFR	>= 90
2	Kidney damage with mild ↓GFR	60 – 89
3	Moderate ↓GFR	30 – 59
4	Severe ↓GFR	15 - 29
5	ESRF	< 15

Chronic Renal Failure

- Deterioration rates
 - ->60 yo
 - 0.75 to 1 ml/min per annum
 - Lindeman RD, et al. Kidney Int, 26:861; 1984.
- In CRD depends upon aetiology diabetes > PVD / analgesics > gn / PCK

Avoiding Nephrotoxins

- Common toxins
 - Lithium.
 - Chemotherapeutic agents.
 - NSAIDs; COX-2; allopurinol.
 - $-H_2$ / proton pump blockers omeprazole.
 - OTC/herbals.
 - Fibrates.

Summary – The Management (1)

- Type 1 and 2 probably the same (renally)
- ACEI or ARB
 - Probably both together (type 1 and 2)
- Good glycaemic control

 HbA1c < 6.5%; certainly <7%
- Good BP control
 - BP <125/75

Summary – The Management (2)

- Minimise proteinuria
 - ACE and ARB
- Avoid nephrotoxins
 - NSAID

Exercise

- Ideal weight or at least weight reduction
- Glycaemic control
- Statins in CRF
 - ?ezetimbe (SHARP trial)

Summary – The Management (3)

- Aspirin
 - Macrovascular disease; IHD
- Folate
 - ->2mg daily (once CRF)
- Refer when eGFR < 30ml/min (MoH)
 - <60ml/min
 - Erythropoietin (GFR at 45ml/min)

Medication Dosing

- Renally cleared medications
 - Needs dose reduction
 - Either dose
 - Or frequency
- Avoid nephrotoxins
 - NSAIDs vs COX2 inhibitors
- Non-prescription OTC & herbals
 - "natural"

Medication Dosing

- Care with combinations
 E.g. NSAIDs and PPI
- Antibiotics
 - Penicillins and cephalosporins
 - Long courses
 - Aminoglycosides
 - High trough levels
 - Vancomycin
 - Long courses and high trough levels

Avoiding Nephrotoxins

- Commonly prescribed nephrotoxins
 - lithium
 - NSAIDs
 - COX-2 inhibitors
 - Allopurinol
 - Cyclosporine; tacrolimus
 - $-H_2$ / proton pump blockers
 - Fibrates