Early Detection of Renal Failure

Dr David Voss ED** BSC MBCHB FRACP MRCP(UK) RNZAMC Renal Physician; Auckland, NZ Visiting Renal Physician to Samoa NKF

Early Detection of Renal Disease

Dr David Voss ED** BSC MBCHB FRACP MRCP(UK) RNZAMC Renal Physician; Auckland, NZ Visiting Renal Physician to Samoa NKF

Summary

Early detection

Essentially to avoid progression

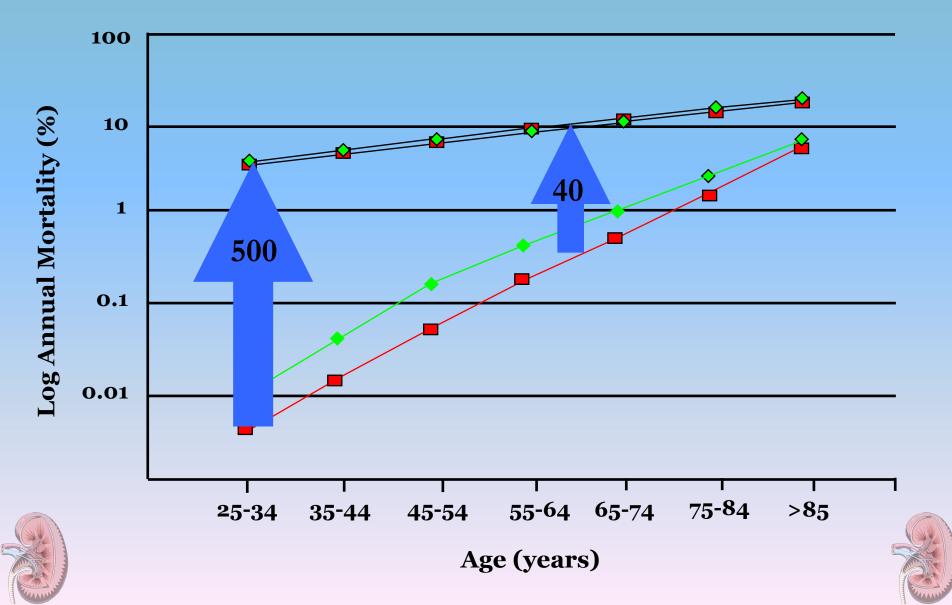
cost effective"

Screening for renal involvement/disease

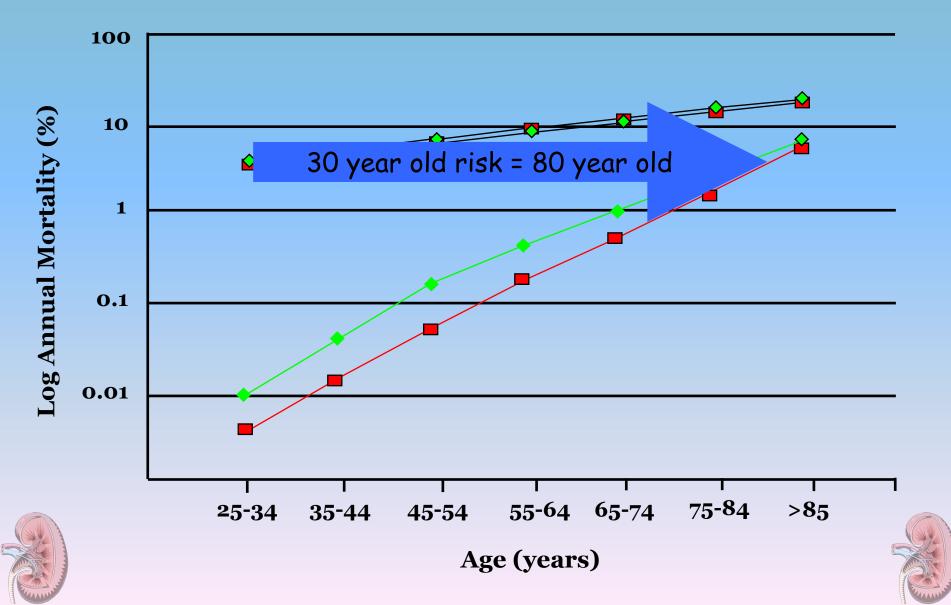
- History, medications (illicit, OTCs), BP
- Renal function: electrolytes; urea; creatinine; eGFR
- MSU: proteinuria; WBC, RBC
 - Casts, specific gravity
- Quantify proteinuria
 - ACR or PCR

Summary

• Goal BP


- <160/90mmHg in non-renal disease</p>
- 130/80 in CKD and proteinuria
- ?140/80 in CKD
- 125/75 in DM with DN (CKD and proteinuria)
- Minimise proteinuria
 - ACEi; ARB
 - non-dihydropyridine CCB
 - spironolactone
- Avoid nephrotoxins

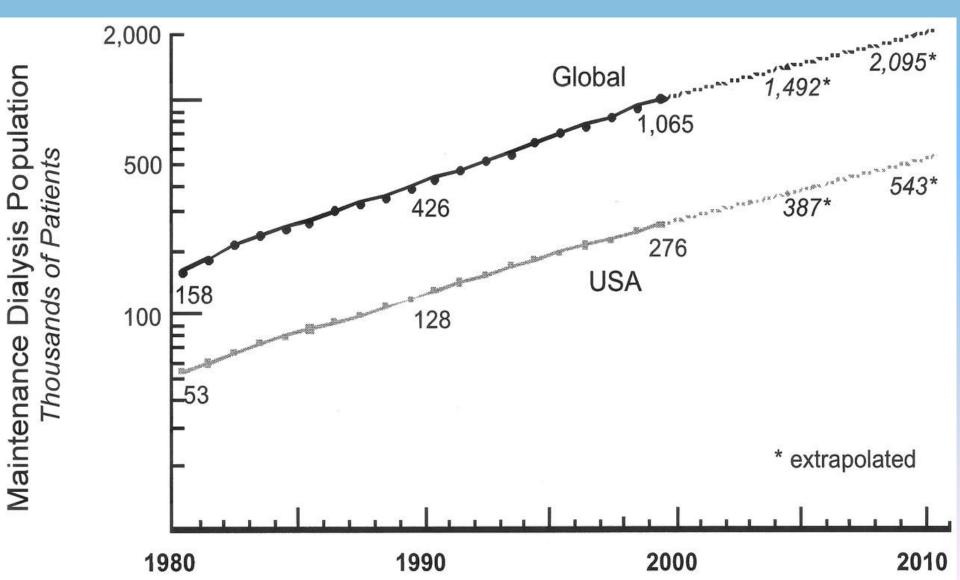
CKD categories


- CKD1 eGFR > 90ml/min/1.73m² BSA
- CKD2 eGFR 60-89ml/min/1.73m² BSA
- CKD3 eGFR 30-59ml/min/1.73m² BSA
 - CKD3A = 45-59
 - □ CKD3B = 30-45
- CKD4 eGFR 15-29ml/min/1.73m² BSA
- CKD5 eGFR <15ml/min/1.73m² BSA
- NOT ALONE:

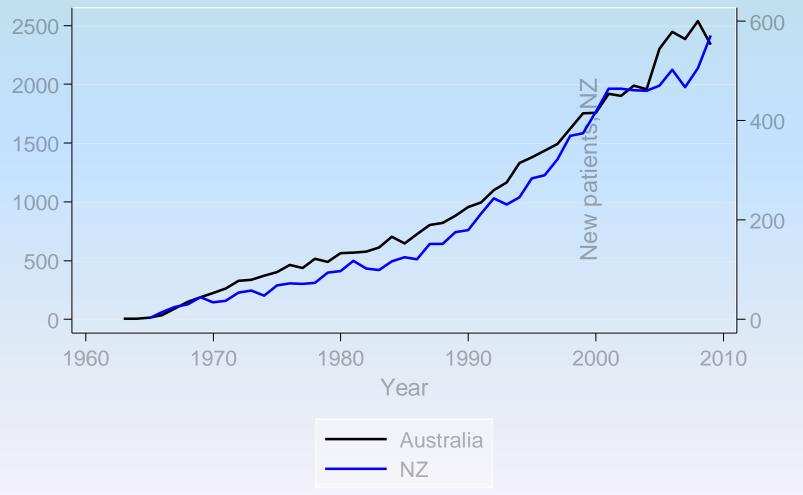
Presence of other potential renal issues

Heart Disease in Haemodialysis Patients

Heart Disease in Haemodialysis Patients

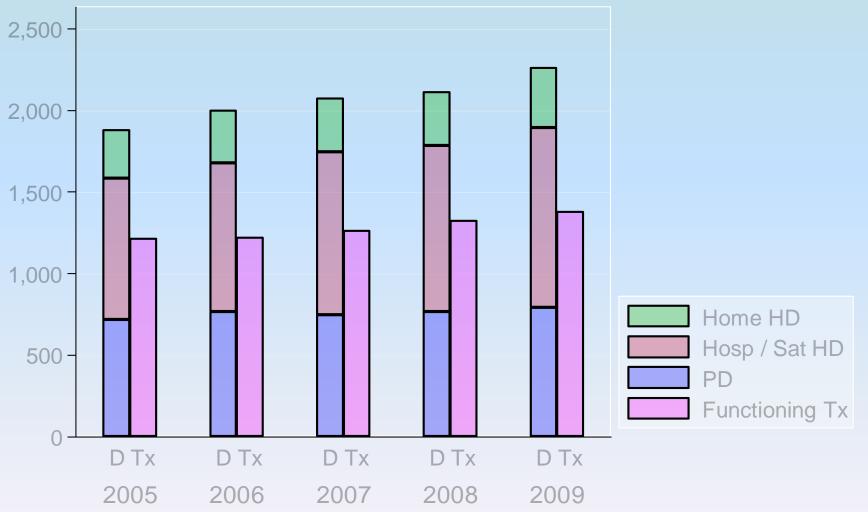


Protective Potential


• Decline in GFR

- Hypertension control
- Minimisation of proteinuria
- Avoidance of nephrotoxins
- Other renal damage trauma, stones, ?pyelonephritis
- Monitor for renal dysfunction
 - depends upon expected rate of progression

Dialysis numbers growth



New Patients Australia and New Zealand

© ANZDATA Registry

Prevalent Dialysis and Transplant New Zealand (at 31 December)

© ANZDATA Registry

Prevent what?

- Renal failure ESRF
- Partial renal damage CKD
 How bad is temporary damage?
- Avoid complications of renal failure
 - Pharmaceuticals dose adjustments
 - Acid-base; anaemia; cardiovascular; endocrine; nutrition; neurological; musculoskeletal...

Cardiovascular risk

- Medicare (US) 2 year follow-up (*n*=1,000,000)
 - 22,000 CKD without DM
 - 1.6% required RRT
 - 17.7% died
 - 30.7% had heart failure
 - 16,000 CKD + DM
 - 3.4% required RRT
 - 19.9% died
 - 52.5% had heart failure

- Longitudinal follow-up of 30,000 patients with eGFR < 90ml/min/1.73m² BSA (= CKD2-5); followed for 5 years....risk of RRT and death:
 - CKD 2 1.1% 19.5%
 - CKD 3 1.3% 24.3%
 - CKD 4 19.9% 45.7%
- Those who died had more of:
 - Coronary artery disease; heart failure; diabetes mellitus; anaemia

- 12,000 older patients with DM:
 - 48% had DN (defined as CKD 3-5; or proteinuria)
 - @ 3 years mortality rates:
 - Normal RF 5%
 - CKD 2 6%
 - CKD 3 10%
 - CKD 4 20%
 - CKD5 30%

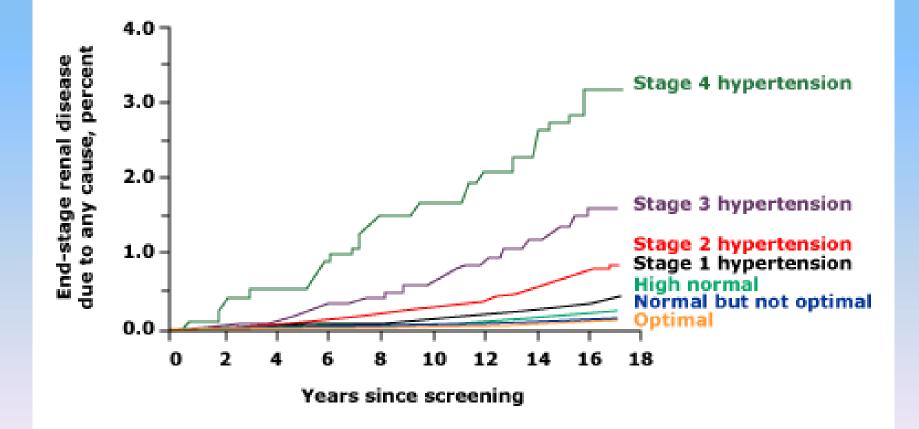
• *Cf.* need for RRT <1% (CKD2); 14% (CKD4)

- Nat Health and Nutrition Examination Survey cardiovascular death rate:
 - eGFR > 90 4.1 deaths per 1000 person-year
 - (CKD1)
 - eGFR 70-89 8.6 deaths per 1000 person-year
 - 20.5 deaths per 1000 person-year
 - (CKD2)

• eGFR <70

- CKD is a risk factor for IHD
 - Risk of cardiac death > 10 fold
 - Risk of heart failure > 20 fold
 - Death rate increases with severity of CKD
 - 2-18 fold (mortality at better renal function)

• CKD 2 (1:7-17.7); CKD4 (1:2.1-2.3)


- More likely to die from CVD than end up with RRT
- Risk of IHD is higher in CKD

Overall cardiac risk - summary

- Absolute risk of CV events in CKD alone is about half that of patients with pre-existing heart disease and without CKD
- Risk increases with progressive CKD and/or proteinuria
 - Pragmatically CKD is eGFR < 60ml/min/1.73m²
 - And proteinuria >1g/24 hours
 - ~PCR 80-100 or ACR 50-60mg/mmol (g/mol)

Risk of ESRD and hypertension

Hypertension in CKD

Causes/factors

- Reduced sodium clearance
- Increased renin-angiotensin system activity
- 2° hyperparathyroidism -> hypercalcaemia -> vasoconstriction
- Increased sympathetic activity
- Low erythropoietin levels
- Higher central pulse pressure, "stiff vessels"; and isolated systolic hypertension

Hypertension in CKD

• Goal of 130/80mmHg or below

- Requires 3 or more drugs
- Include:
 - ACE and/or ARB
 - In combination hyperkalaemia is limiting factor
 - Diuretic loop +/- chlorthalidone
 - In combination with Na⁺ restriction diet (<100mmol)
 - CCB diltiazem or verapamil
 - Not dihydropyridines by choice but are OK to use
 - 4th agent...spironolactone (K⁺)

Hypertension

- Non-diabetics with CKD with proteinuria (>500mg/24 hrs; ~ PCR 30-50)
 - Goal BP is < 130/80mmHg reduces progression of CKD and maybe mortality
- Non-proteinuric patients
 - JURY STILL OUT (no evidence yet)
 - ?<140/90; or ?130/80 (maybe the later since CKD is a CVD risk factor)

Hypertension in CKD

Diabetes mellitus

- With proteinuria (and therefore assume DN)
- Goal BP <125/75mmHg</p>

Proteinuria

- Meta-analysis of general population cohort: *n*=105,872 (ACR), plus *n*=1,128,310 (dipstick) proteinuria); mean follow-up of 7.9 years (cf. a group with mean eGFR of 95)
 - Hazard ratios for all cause mortality
 - eGFR 60 1.18 (CI 1.05-1.32)

 - eGFR 45 1.57 (CI 1.39-1.78)
 - eGFR 15
- 3.14 (CI 2.30-4.13)

Other proteinuria evidence

- Presence of proteinuria alone -> RR of cardiovascular event = 1.3
- Nat Health and Nutrition Examination Survey cardiovascular death rate (unadjusted):
 - Proteinuria <30
 6.2 deaths / 1000 person-yr
 - Proteinuria 30-299 17.9 deaths / 1000 person-yr
 Proteinuria >300 37.2 deaths / 1000 person-yr
- When adjusted:
 - Relative hazard 1.57 (30-299 cf. <30 cohort)
 - Relative hazard 1.8 (>300 cf. <30 cohort)

Microalbuminuria

- Associated with LV dysfunction; stroke; MI
- Doubles mortality in DM
 Especially in type I DM
- Indicator of inflammation
 - Within renal tissue
 - Endothelium

Dietary salt and proteinuria?

- Anti-proteinuria effects of ACE reduced with high salt diet in NON-DIABETICS
- Therefore in the non-diabetic with proteinuria
 - With good BP (systolic < 130mmHg)
 - Should have sodium restricted diet
 - 24 hour urine Na < 100mmol.

So what do we do in clinical practice?

- Look
 - Skin
 - Rashes
 - Vasculitis
 - CT diseases
 - Anaemia
 - Fundi
 - Oedema

- Feel
 - Pulses
 - asymmetry
 - Cardiac
 - Apex
 - Thrust/heave
 - Oedema; ascites
 - Bladder
 - Prostate

- Listen
 - BP
 - Lying and standing
 - Both arms
 - Murmurs
 - Bruits

- Smell
 - Foetor breath
 - Ammonia
 - Acidosis
 - Urine (incontinence)
- Taste

Investigation internal medicine

Asymptomatic

- Down to your last 10% of renal function before symptoms
- Renal disease symptoms are NON specific

Laboratory testing

- Blood
- MSU
- Proteinuria PCR vs ACR
- Radiology testing
 - USS

Kidney Disease - AKI model

- Pre-renal
 - BP, vascular/PVD, vasculitis

• Post-renal

- Obstruction
- USS
- Rarely functional DTPA
- Renal
 - Everything else
 - Laboratory and radiology investigation

Monitoring

• How often?

- Depends upon progression rates (annual)
 - DM2 10-12ml/min/1.73m² BSA
 - 3 monthly diabetes care programme
 - Gn 1-2ml/min/1.73m² BSA
 - Body rot 0.5-1ml/min/1.73m² BSA

Nephrotoxins

• PPI

Class effect

• NSAIDs

COX-2 is no different

Summary

- Early detection
 - Essentially to avoid progression
- Screening for renal involvement/disease
 - History, medications (illicit, OTCs), BP
 - Renal function: electrolytes; urea; creatinine; eGFR
 - MSU: proteinuria; WBC, RBC
 - Casts, specific gravity
 - Quantify proteinuria
 - ACR or PCR

Summary

• Goal BP

- <160/90mmHg in non-renal disease</p>
- 130/80 in CKD and proteinuria
- ?140/80 in CKD
- 125/75 in DM with DN (CKD and proteinuria)
- Minimise proteinuria
 - ACEi; ARB
 - non-dihydropyridine CCB
 - spironolactone
- Avoid nephrotoxins

- Present as....
- Interstitial nephritis picture
 Sterile pyuria
- May have proteinuria
- May have impaired renal function
 Acutely or chronically

Avoiding Nephrotoxins

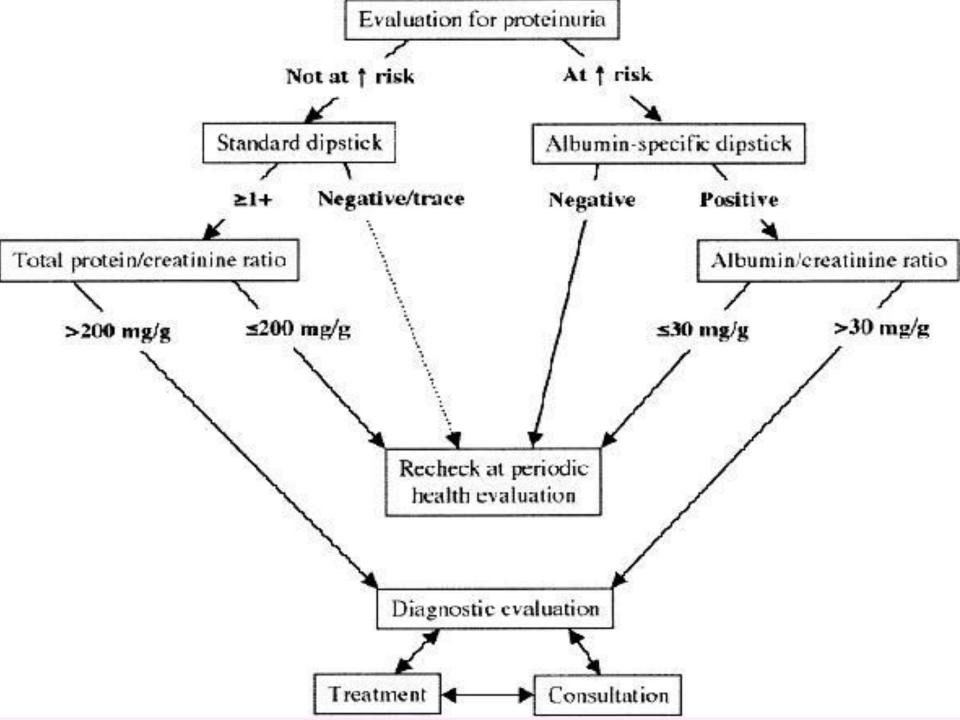
Common toxins

- Lithium.
- Some chemotherapeutic agents.
- NSAIDs; COX-2 inhibitors
- Allopurinol.
- H₂ / proton pump blockers omeprazole, pantoprazole, lansoprazole, etc.
- OTC/herbals.
- Fibrates.
- Quinolone antibiotics (uncommon)

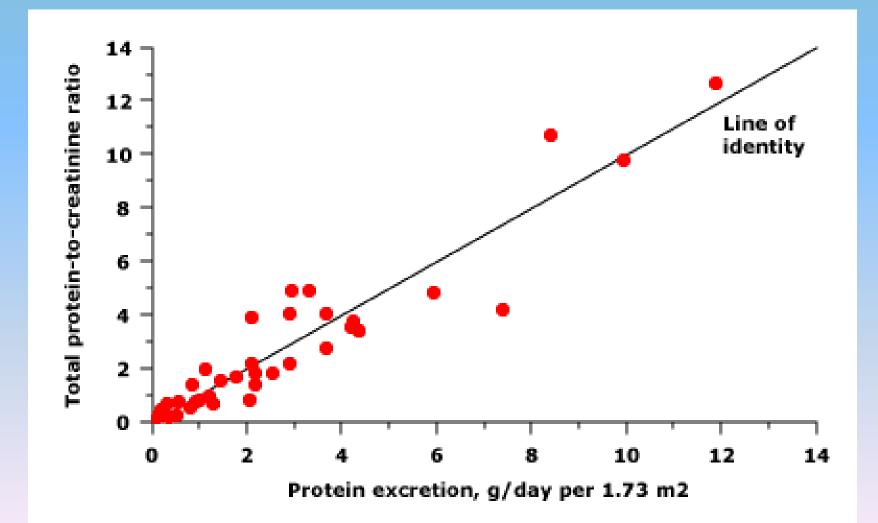
Hypertension and GP meeting 21 Renoprotection March 2009

- Chinese herbals:
 - Aristolochic acid (Guan Xin Su He)
 - NSAID (Sang Ju Gan Mao Pian)
 - NSAID (Yen Qiao Jie Du Pian)
 - NSAID (tung Shueh pills)
 - Others: Guan Mu Tong; Dahuong Qingwei, Daochi, Fenqing Wulin, Longdon Xiegan pills; Xiaoer Jindan tablets.

Hypertension and GP meeting 21 Renoprotection March 2009

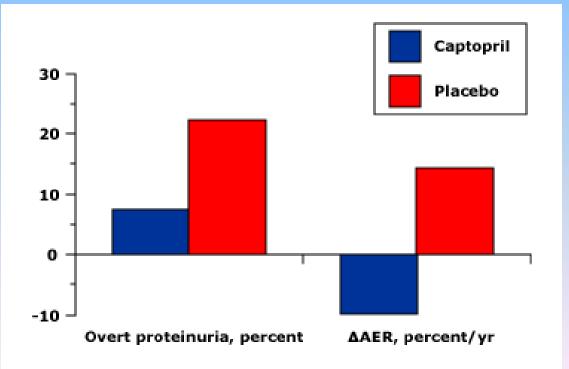

- Glycyrrhiza
 - Fanconi syndrome
- Noni juice
 - Hyperkalaemia and diuretic
- Cat' claw (<u>Uncaria tomentosa</u>)
 - AKI
- <u>Taxus celebica</u>
 - AKI, haemolysis

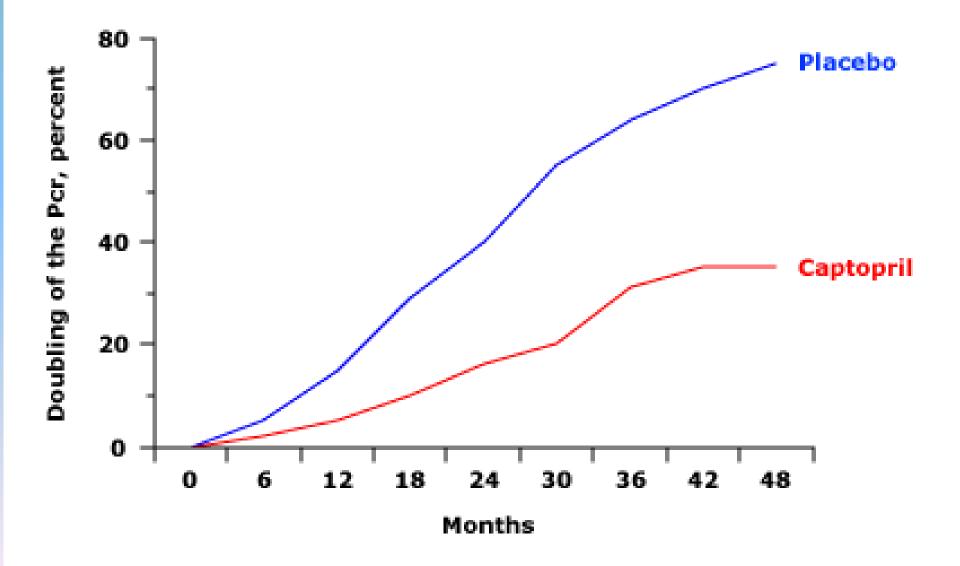
Hypertension and GP meeting 21 Renoprotection March 2009


- Salicin
 - Willow bark
- Sorrel (<u>Rumex acetosa</u>)
 Oxalosis, kidney stones
- Essiac (<u>Ulvis spp</u>)
 Oxalosis, kidney stones
- Peppermint oil
 - Interstitial nephritis
- St John's wort
 - Interstitial nephritis

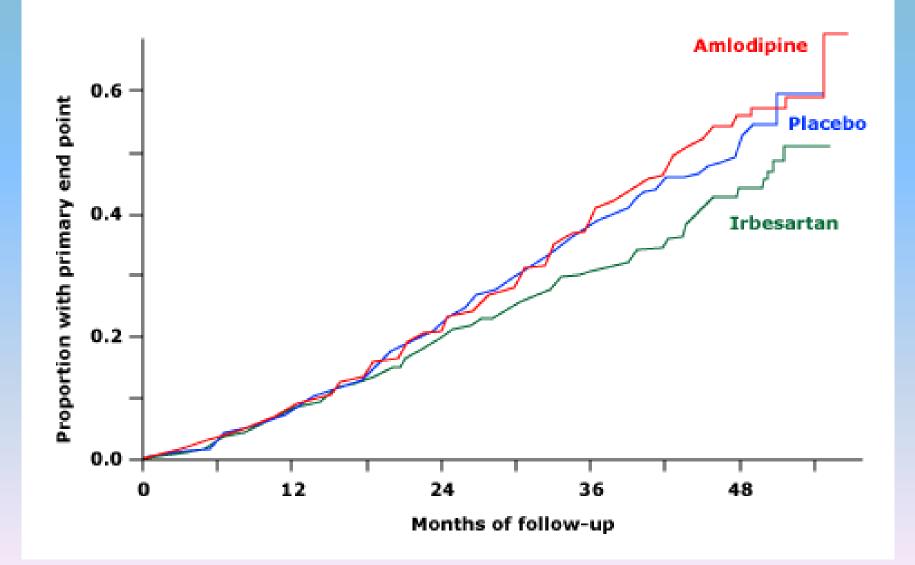
Toxic agent	Effect
Aristocochic acid	"herbal nephropathy" (IN and CKD)
Cat's claw	Hypertension; AKI
Ephedra	Hypertension
Noni juice	hyperkalaemia
Peppermint oil	Interstitial nephritis (IN)
St John's Wort	Interstitial nephritis (IN)
Yohimbine	Progressive CKD

Proteinuria measurement




Proteinuria measurement

ACR (mg/L)	24 hour proteinuria	PCR (mg/L)
30	1	60
100	3	200
225	6	400
350	10	600


Proteinuria reduction

• Most of the evidence is in ACEs (type 1 DM) and in ARBs (type 2 DM)

DN2 - Irbesartan (and RENAAL)

What about ACEi AND ARB?

- Together in BOTH type 1 and 2 DN
- ACE + ARB reduces proteinuria
- BUT
 - No evidence that combination is better than monotherapy in progression of CKD
- AND adverse events (ONTARGET trial)
 - Hyperkalaemia
 - Decline in eGFR/renal function
 - Accept rise up to 30% from baseline serum creatinine

More on proteinuria

- Aldosterone antagonists
 - 34% reduction cf. placebo in proteinuria
 - (cf. losartan 17% reduction)
 - BUT Ace + ARB +aldo antag -> +++[K⁺]_s
- Diltiazem and verapamil (in diabetics only)
 - Verapamil + ACE at non-max doses had similar effect, with less side effects (hyperkalaemia) in DN of DM-2.

Lipids and kidneys

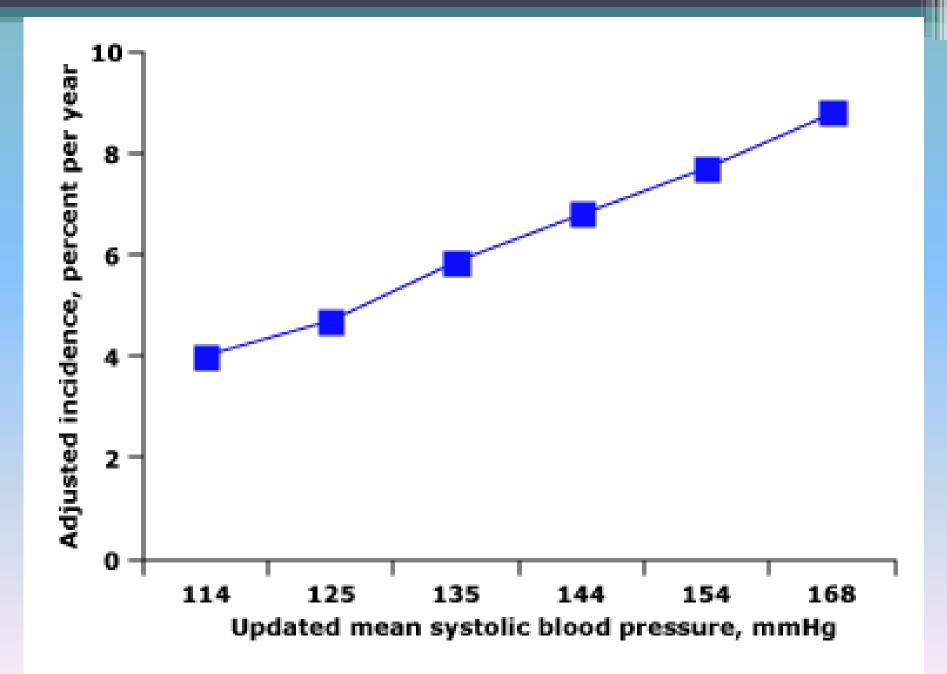
Lipids and kidney disease

- Reduce cardiac disease in *absence* of CKD
- SHARP
 - Lipid lowering in CKD (not on RRT) reduced CV events, BUT NOT overall mortality
- Statins have a pleiotropic effect
 May reduce progression of CKD
- No trials that tell us the goal cholesterol
 - Trials that look at statin dose
 - CV risk falls with LDL reduction
 - Trials that document dyslipidaemia lowering

Aspirin in CKD

• HOT trial

- Reduction in CV events in CKD3A
- Increased risk of bleeding in some CKD groups
 - CV benefit out-weighed this bleeding risk
 - Overall risk ~ 2.5% per person-year (n=255 HD*)

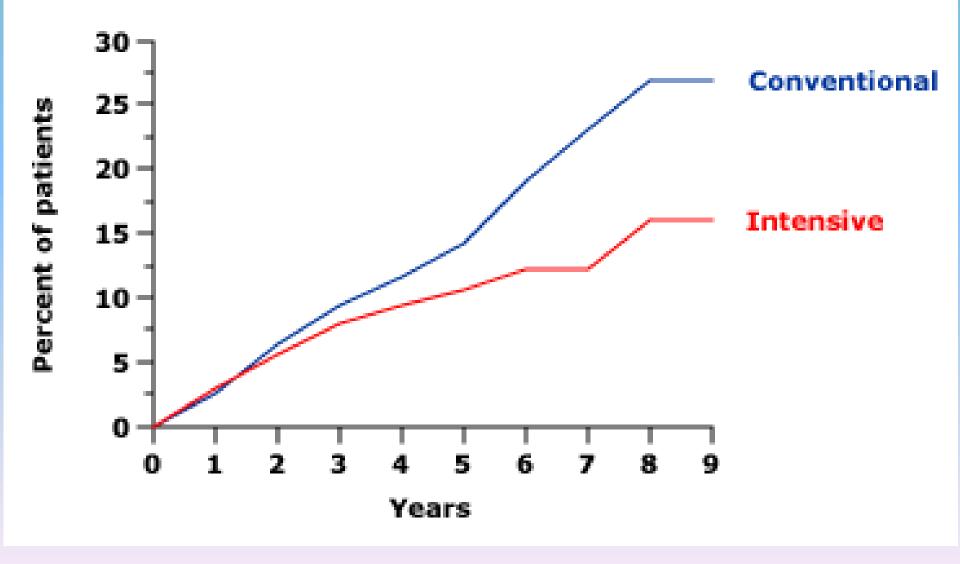

• DOPPS

- Reduced stroke
- Increased risk of CV events (MI)
 - But wise variety of use:
 - Japan (8%) cf. 41% (ANZ)

*HD = haemodialysis

Other factors in delaying CKD progression

- Smoking cessation
- Maintenance of IBW
- Active lifestyle
- Other possibilities:
 - Correction of anaemia
 - Reduction of oxidative stress
 - Ca-P product
 - Systemic inflammation reduction



Diabetes control and progression of renal disease

Glycaemic control

• Type 1 DM

- Good control of blood glucose levels...
 - Partly reverses the hyperfiltration and glomerular hypertrophy
 - Delays development of albuminuria
 - Regress/completely reverse albuminuria
 - May take 2 years of normal glucose levels
 - Following pancreas transplant (PAK)
 - Prevents recurrent DN in renal allograft

Glycaemic control

• Type 2 DM

- Good control of blood glucose levels...
 - Delays development of albuminuria

Salt and hypertension

Case 1

- 58 male
 - BP sub-optimal control
 - 130/85 160/110; ?recurrence of RAS
 - eGFR 58ml/min/1.73m2 (creat 118 µmol/L)
- Kidney stones (2x in 10 years)
- R renal a stenosis
 - 5 years prior, check 12/12 later OK
- Gout
- Accountant; rarely etOH; non-smoker

Case 1

• Medications:

- Allopurinol 100mg
- Colchicine prn (rarely)
- Accupril 10mg bd
- Hyzaar 50/12.5 mane
- Atenolol 50mg daily
- Cartia 1 daily

Case 1

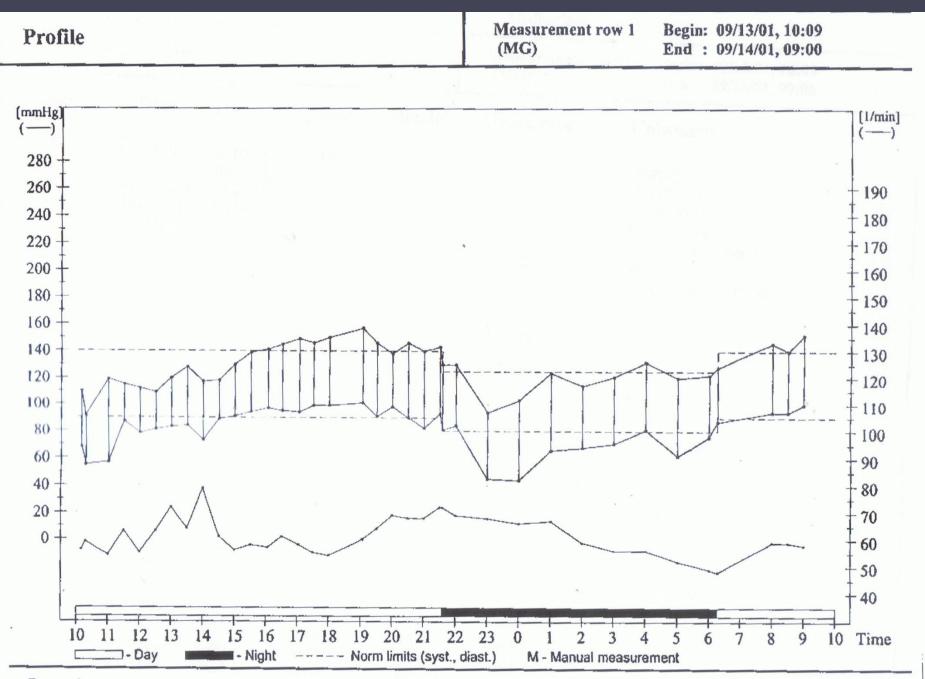
Examination

- Thin, well-looking
- 146/76 lying; 140/74 standing
- PR 60/min
- Good peripheral pulses
- No abdominal bruit
- Feel L kidney, not right
- No other abnormality

Case 1

• Plan:

- Hypertension
 - 24 hour BP monitor
 - Goal <130/80
 - Home monitoring
- Gout
 - Stop thiazide of Hyzaar Cozaar
 - Aim for uric acid <0.36mmol/L
- eGFR
 - Renal tract USS; myeloma screen

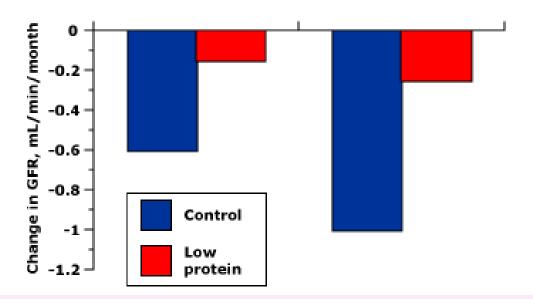


Case 1

• Progress:

- USS normal
- BP 150-159/96-97; 146/93 average at home
- 361mmol Na+/24 hours
 - Dietitian
 - Breakfast cereal, breads, Vegemite®,
- Review
 - 5 months: 62mmol Na+/24 hours

Remarks:


Dietary salt and proteinuria?

- Anti-proteinuria effects of ACE reduced with high salt diet in NON-DIABETICS
- Therefore in the non-diabetic with proteinuria
 - With good BP (systolic < 130mmHg)
 - Should have sodium restricted diet
 - 24 hour urine Na < 100mmol.

Protein restriction

Dietary protein restriction

- DM type 1
 - 2 small trials (*n*=54 in total)
 - Diet protein and phosphate restriction
 - Decline in GFR from 12ml/min pa to 3ml/min pa

Dietary protein restriction

- BUT larger studies have shown no benefit on progression of CKD (in DM)
 - Better BP and proteinuria control
- NON-DM dietary protein restrition
 - Low protein diet results in more CHO and fat
 - Malnutrition
 - Especially PEM
 - Results in greater mortality

Hyperuricaemia

- Association of hyperuricaemia and:
 CHD and mortality
- Cause, association, surrogate or effect?
 - Increased risk of hypertension
 - oxidative stress
 - Marker for hypertension; abnormal lipids; DM
- Or is hyperuricaemia a marker of CKD?

Calcification of arterial tree

- In meta-analysis of 17 studies (*n*>15,000)
- "Arterial stiffness" (aortic pulse wave)
 pulse wave velocity between carotid and femoral
- When comparing APW (aortic pulse wave)
 - RR of any coronary event 2.26
 - RR of CV mortality 2.02
 - RR of all-cause mortality 1.90

• CKD

- Calcium phosphate abnormalities
- Hyperparathyroidism
- Calcium phosphate binders

- HMO study (n=139,849)
 - Follow-up mean of 28 years
 - Aortic calcification on CXR
 - RR of CAD (men) 1.27
 - RR of CAD (women) 1.22
 - RR of stroke (women)1.46
- Framingham study (*n*=2,515)
 - Follow-up 22 years
 - Increased risk of aortic calcification -> death

• Large long-duration observational studies have shown calcification of aorta is associated with increased risk of CVD death.

- CKD
 - Calcium phosphate abnormalities
 - Hyperparathyroidism
 - Calcium-based phosphate binders
- More recent techniques of CT of coronary vessel calcification in CKD patients similarly associated with increased death rate
 - Is only an association
 - What will happen with intervention and calcium load reduction?

Hyperphosphataemia

Hyperphosphataemia of CKD

- Framingham Study subgroup (n=3,368), mean age 44 years.
 - Hyperphosphataemia associated with increased risk of CAD
 - RR 1.55 (high vs. low serum phosphate)

- Present as....
- Interstitial nephritis picture
 Sterile pyuria
- May have proteinuria
- May have impaired renal function
 Acutely or chronically

Avoiding Nephrotoxins

Common toxins

- Lithium.
- Some chemotherapeutic agents.
- NSAIDs; COX-2 inhibitors
- Allopurinol.
- H₂ / proton pump blockers omeprazole, pantoprazole, lansoprazole, etc.
- OTC/herbals.
- Fibrates.
- Quinolone antibiotics (uncommon)

Hypertension and GP meeting 21 Renoprotection March 2009

- Chinese herbals:
 - Aristolochic acid (Guan Xin Su He)
 - NSAID (Sang Ju Gan Mao Pian)
 - NSAID (Yen Qiao Jie Du Pian)
 - NSAID (tung Shueh pills)
 - Others: Guan Mu Tong; Dahuong Qingwei, Daochi, Fenqing Wulin, Longdon Xiegan pills; Xiaoer Jindan tablets.

Hypertension and GP meeting 21 Renoprotection March 2009

- Glycyrrhiza
 - Fanconi syndrome
- Noni juice
 - Hyperkalaemia and diuretic
- Cat' claw (<u>Uncaria tomentosa</u>)
 - AKI
- <u>Taxus celebica</u>
 - AKI, haemolysis

Hypertension and GP meeting 21 Renoprotection March 2009

- Salicin
 - Willow bark
- Sorrel (<u>Rumex acetosa</u>)
 Oxalosis, kidney stones
- Essiac (<u>Ulvis spp</u>)
 Oxalosis, kidney stones
- Peppermint oil
 - Interstitial nephritis
- St John's wort
 - Interstitial nephritis

Toxic agent	Effect
Aristocochic acid	"herbal nephropathy" (IN and CKD)
Cat's claw	Hypertension; AKI
Ephedra	Hypertension
Noni juice	hyperkalaemia
Peppermint oil	Interstitial nephritis (IN)
St John's Wort	Interstitial nephritis (IN)
Yohimbine	Progressive CKD

